How to Tackle an Extremely Hard Learning Problem: Learning Causal Structures from Non-Experimental Data without the Faithfulness Assumption or the Like
نویسندگان
چکیده
Most methods for learning causal structures from non-experimental data rely on some assumptions of simplicity, the most famous of which is known as the Faithfulness condition. Without assuming such conditions to begin with, we develop a learning theory for inferring the structure of a causal Bayesian network, and we use the theory to provide a novel justification of a certain assumption of simplicity that is closely related to Faithfulness. Here is the idea. With only the Markov and IID assumptions, causal learning is notoriously too hard to achieve statistical consistency but we show that it can still achieve a quite desirable “combined” mode of stochastic convergence to the truth: having almost sure convergence to the true causal hypothesis with respect to almost all causal Bayesian networks, together with a certain kind of locally uniform convergence. Furthermore, every learning algorithm achieving at least that joint mode of convergence has this property: having stochastic convergence to the truth with respect to a causal Bayesian networkN only ifN satisfies a certain variant of Faithfulness, known as Pearl’s Minimality condition—as if the learning algorithm were designed by assuming that condition. This explains, for the first time, why it is not merely optional but mandatory to assume the Minimality condition—or to proceed as if we assumed it.
منابع مشابه
An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملThe Role of Corrective Feedback and Learning Styles on EFL Students’ Acquisition of Grammatical Structures
The role of oral corrective feedback has been investigated by SLA researchers from various perspectives. Focusing on Iranian EFL context, the present study aimed to explore the role of receiving corrective feedback in the learning of English grammatical structures. It also probed the association between the type of corrective feedback and EFL learners’ learning styles. This was an experimental ...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملConstraint-based Causal Structure Learning when Faithfulness Fails
Constraint-based causal structure learning algorithms rely on the faithfulness property. For faithfulness, all conditional independencies should come from the system’s causal structure. The problem is that even for linear Gaussian models the property is not tenable. In this paper, we identify 4 non-causal properties that generate conditional independencies and investigate whether they can be re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.07051 شماره
صفحات -
تاریخ انتشار 2018